The United Nations system

Principal Organs

- Trusteeship Council
- Security Council
- General Assembly
- Economic and Social Council
- International Court of Justice
- Secretariat

Subsidiary Bodies
- Military Staff Committee
- Standing Committee and ad hoc bodies
- International Criminal Tribunal for the Former Yugoslavia
- International Criminal Tribunal for Rwanda
- UN Monitoring, Verification and Inspection Commission (Iraq)
- United Nations Compensation Commission
- Peacekeeping Operations and Missions

Programmes and Funds
- UNCTAD United Nations Conference on Trade and Development
- ITC International Trade Centre (UNCTAD/WTO)
- UNDCP United Nations Drug Control Programme
- UNDP United Nations Development Programme
- UNIFEM United Nations Development Fund for Women
- UNV United Nations Volunteers
- UNCDF United Nations Capital Development Fund
- UNFPA United Nations Population Fund
- UNHCR Office of the United Nations High Commissioner for Refugees
- WFP World Food Programme
- UNRWA/UNRWA Relief and Works Agency for Palestine Refugees in the Near East
- UN-HABITAT United Nations Human Settlements Programme (UNHSP)
- UNCHR United Nations High Commissioner for Human Rights

Research and Training Institutes
- UNICRI United Nations Interregional Crime and Justice Research Institute
- UNITAR United Nations Institute for Training and Research
- UNRISD United Nations Research Institute for Social Development
- UNIFEM United Nations Institute for the Advancement of Women
- INSTRAW International Research and Training Institute for the Advancement of Women

Other UN Entities
- OHCHR United Nations High Commissioner for Human Rights
- UNOPS United Nations Office for Project Services
- UNU United Nations University
- UNSCC United Nations System Staff College
- UNAIDS Joint United Nations Programme on HIV/AIDS

Related Organizations
- WTO World Trade Organization
- IAEA International Atomic Energy Agency
- CTBTOPREPCOM Preparatory Commission for the Nuclear-Test-Ban-Treaty Organization
- OPCW Organization for the Prohibition of Chemical Weapons
- WMO World Meteorological Organization
- IFAD International Fund for Agricultural Development

Specialized Agencies
- ILO International Labour Organization
- FAO Food and Agriculture Organization of the United Nations
- UNESCO United Nations Educational, Scientific, and Cultural Organization
- WHO World Health Organization
- IBRD International Bank for Reconstruction and Development
- IDA International Development Association
- IFC International Finance Corporation
- MIGA Multilateral Investment Guarantee Agency
- ICSID International Centre for Settlement of Investment Disputes
- IMF International Monetary Fund
- ICAO International Civil Aviation Organization
- IMO International Maritime Organization
- ILO International Labour Organization
- ITU International Telecommunication Union
- UPU Universal Postal Union
- WHO World Health Organization
- WTO World Trade Organization

Departments and Offices
- OSG Office of the Secretary-General
- OIOS Office of Internal Oversight Services
- OLA Office of Legal Affairs
- DPA Department of Political Affairs
- DDA Department for Disarmament Affairs
- DPKO Department of Peacekeeping Operations
- OCHA Office for the Coordination of Humanitarian Affairs
- DESA Department of Economic and Social Affairs
- DGACM Department for General Assembly and Conference Management
- DPI Department of Public Information
- DM Department of Management
- OHRLIS Office of the High Representative for the Least Developed Countries, Landlocked Countries and Small Island Developing States
- UNSECO United Nations Office on Drugs and Crime
- UNO Country Offices
- UN Office at Geneva
- UN Office at Vienna
- UN Office at Nairobi

Notes: Solid lines from a Principal Organ indicate a direct reporting relationship; dashes indicate a non-subordinate relationship. The UN Drug Control Programme is part of the UN Office on Drugs and Crime. UNRWA and UNIFEM report only to the GA. The World Trade Organization and the World Tourism Organization use the same acronym. IAEA reports to the Security Council and the General Assembly (GA). The CTBT PrepCom and OPCW report to the GA. Specialized agencies are autonomous organizations working with the UN and each other through the coordinating machinery of the ECOSOC at the intergovernmental level, and through the Chief Executives Board for Coordination (CEB) at the inter-secretariat level.
The United Nations

Name: Joshua Cook / Joshua Cook NKR

In what year was the UN established?
October 24, 1945

How many countries are members?
197 countries

If the United Nations is not a world government, what is it? Or what do they do?
The United Nations is not a world government and it does not make laws.

Where is the United Nations building?
In New York

What are the six main organs of the UN?
- General Assembly
- Security Council
- Economic and Social Council
- Trusteeship Council
- International Court of Justice
- Secretariat

What is the General Assembly?
A "parliament of nations" which meets to consider the world's most pressing problems.

(Amaoko & Narishkin 2009)
The Security Council... responsibility for maintaining international peace and security. The Council... effectively pursue... structure of the United Nations and the... diplomatic... action... on issues... of international... cooperation... fostering international development.
Background information for the teacher continued

Stems -- The functions of the stem is to 1) hold up the plant and 2) to transport water and nutrients absorbed from the roots up to the rest of the plant and to transport energy containing compounds made in the leaves down to the rest of the plant. To perform the function of holding up the plant the stem must be strong enough to support the weight of all the branches and leaves that are above the stem. The thickness and rigidity of the stem will depend on the size of the plant.

To perform the function of transporting water, nutrient, and energy containing compounds, the stem must have veins (tubes) that run up and down the inside of the stem (you might want to ask the students if they have ever noticed the string-like veins in celery, which is a stem that we eat).

Leaves -- The function of the leaves is to capture energy from the sun and store this energy in carbon-based molecules through the process of photosynthesis. The students will learn more about photosynthesis in the next lesson. The leaves are thick and wide in order to have maximum surface area facing the sun.

Flowers -- The function of the flower is to enable the plant to produce seeds, the flower often has large petals that lead to the center to enable insects that germinate the flowers to get in.

Fruit -- The function of the fruit is to store seeds and to give nourishment to the seeds. The seeds are most often stored deep within the fruit to protect them. (Strawberries are an exception since the seeds are on the outside.) The skin of the fruit serves as the protector and the “fleshy” part of the fruit serves as storage for nutrients for the seeds.

Seeds -- The function of the seeds is to enable the plant to reproduce. Different plants have different size, shape and weight seeds. Some plants have small light seeds that are easy to distribute since they can blow in the wind. However, other plants have large seeds (like peaches) that are more challenging to disperse and are usually taken from place to place by people or animals.
Overview
In this lesson students will learn about the process of photosynthesis through discussion and activities.

Science and Nutrition Concepts
- photosynthesis is the process plants use to capture energy from the sun
- all life depends on photosynthesis

Objectives
- Students will be able to describe the process of photosynthesis.
- Students will be able to discuss how photosynthesis helps plants to create energy.
- Students will be able to explain why plants are the “food producers of the world.”
- Students will articulate why people would have no food if it were not for plants.

Key words and their definitions
- carbohydrate -- a compound made of carbon, hydrogen and oxygen. An example of a carbohydrate is glucose (sugar), plants make glucose from carbon dioxide, water and energy from the sun. This is called photosynthesis
- chemical energy -- specific type of energy made from the combination of oxygen and other things in the body, which makes it possible for plants and animals to grow
- chlorophyll -- the green pigment found in plants which gives them their color
- chloroplasts -- the very small cells of the plant which store chlorophyll
- energy -- the word “energy” comes from the Greek words meaning “contains work”. Energy makes it possible for plants and animals to grow
- fat -- a compound in food which the body can use as an immediate energy source, but prefers to store for later use.
- glucose -- a carbohydrate produced by photosynthesis that is used by plants and animals for chemical energy. It is composed of six carbon atoms, twelve hydrogen atoms and six oxygen atoms. (C₆H₁₂O₆)
- photosynthesis -- the process through which solar (sun) energy is changed into chemical energy, and glucose is produced. Photosynthesis literally means “putting together with light”
- protein -- a compound in food which the body uses to build structures and do work. It can also be broken down and used by the body as energy.
- solar energy -- energy contained in sunlight.
Photosynthesis

The Process of energy transformation

Solar Energy (Light)

Green Leaf

CO₂

H₂O

(CHLOROPLAST)

Solar energy is converted into chemical energy in the chloroplast, then changed into:

Glucose
The plant's food

The flow of energy from the sun into the plant's food

The combination of 6 carbon dioxide molecules (CO₂) and 6 water molecules (H₂O) produces 1 molecule of sugar (glucose) (C₆H₁₂O₆) and 6 molecules of oxygen (O₂) that get released into the air.

6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂

Module 1: How does nature provide us with food?
Module 1, Lesson 3: Plants making food from the sun

Photosynthesis

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + \text{O}_2 \]

- **Carbon Dioxide** (CO₂)
- **Water** (H₂O)
- **Food** (glucose)
- **Chloroplast**
- **Oxygen** (O₂)
- **Energy**
photosynthesis

A process by which a plant produces its food using energy from sunlight, carbon dioxide from the air, and water from the soil.
Flower Facts

Why Do Plants Have Flowers?

The goal of every plant and animal is the same: To create the next generation. The way a plant makes another generation of its species is by making seeds. Flowers are the tools that plants use to make their seeds.

A seed contains all the information needed to make a new plant. This information is stored as a code in tiny genes within the seed. This genetic code forces the seed to grow into a plant like its parents. Although the new plant will be the same species as its parents, it will not be exactly the same as either of them. Its genetic code is a new mix of genes, half from each parent.

Only flowers from the same species of plant can produce seeds. A flower provides a place to combine the genetic code from a male and a female into a single seed. The combination happens when the pollen, from the male parts of one flower, connects with an ovule (egg) from the female parts of another flower. This is called pollination.

Here are the basic parts of a flower:

But how does the pollen from one flower get to the ovules of another flower? Unlike animals, plants can’t exactly go out hunting for a mate! Instead of working very hard at attracting each other, plants make flowers to attract pollinators to do the work of mating for them.

Pollinators can be bees, flies, beetles, moths, hummingbirds, bats and other animals that visit flowers. They gladly travel from flower to flower to gather the nectar and pollen to feed themselves or their young. The plants make the nectar and pollen just to attract the pollinators. Flowers are like big signs that advertise to pollinators: Eat Here!
When a pollinator goes into a flower to collect nectar or pollen, tiny grains of pollen from the **anthers** of the flower (the male parts) stick to their bodies. When the pollinator visits another flower of the same species, some of this pollen brushes onto the sticky **stigma**. The stigma is the receiving end of the **pistil** (the female part of a flower), where the ovules (eggs) in the **ovary** wait to be fertilized by the pollen. The pollen travels from the stigma, down the style, to the ovary. When an ovule is fertilized, the genes from the pollen combine with the genes of the ovule and a seed is made!

POLLINATION

1. The pollinator receives **pollen** from the **stamen** of the first flower.
2. And deposits it on the **stigma** of the next flower.
3. The pollen moves down the style to join with the **ovules** in the **ovary**.

This is how it happens:

The job of a flower is to help its pollinator put pollen exactly in the right place at the right time to make a seed. When a plant's flower succeeds at this, the plant gets to pass the secret for this success to the next generation, through the genetic code in its seeds! When a plant fails to grow up and make seeds, its genetic code does not get passed on. It becomes a loser in the game of life.

The environment is constantly testing each plant. Competition for sunlight, water, nutrients and space is fierce. **Herbivores** are hungry and plants are their breakfast, lunch and dinner! Only the strongest individuals survive long enough to reproduce. These survivors keep making seeds, letting the environment select the winners and losers. Through this selection process plants have **evolved** (developed) to survive life in every habitat on our planet. This **evolution** has filled even the harshest habitats with life, including vernal pools.

Although the pollination of a flower may appear to happen by accident, plants and pollinators have been practicing for millions of years to make sure that this "accident" happens. Often a plant and pollinator co-evolve (evolve together), adapting to changes in each other to improve their own survival. A plant species may depend on a single species of pollinator to make its seeds. Likewise, many pollinators rely on one plant species to provide all the food for their young. The complex relationship between solitary bees and certain vernal pools plants is a good example of this co-evolution.
Flower Parts & Pollination Worksheet

Fill in the boxes with the name of the flower part from the words in the box below. Color the petals red, the sepals green, and the pollen yellow.

- stigma
- petals
- style
- anther
- ovary
- filament
- sepal

How Pollination Works

Fill in the blanks.

1. For plants to make seeds, the pollen from the [anther] of one flower needs to fertilize the ovule of another flower.

2. The seeds are produced in the flower's [ovary], at the base of the pistil.

3. A variety of critters collect pollen and nectar to feed themselves and their young. These critters also carry pollen from one flower to another and are called [pollinators].

4. Name at least four critters that might be pollinators:
 - flies
 - moths
 - hummingbirds
 - beetles
The Bee and the Brassica: Interdependence

Bees and Brassica plants need each other in order to live. Each one takes something from the other and gives something in return. You might say that they have a real partnership.

Why does a flower need a bee? The main reason is so that the flower can make seeds. The Brassica flower holds both the male and the female parts of the plant. The male parts, the filament and anther, produce the pollen, which looks like fine yellow powder. Pollen must travel to the female parts, the pistil and stigma, of another flower on a different Brassica plant. Unless the pollen from one plant can reach another plant, no new seeds will form. Then, no new Brassica seedlings will grow.
So it is very important that the pollen get from one plant to another. But the problem is that the pollen is sticky and cannot easily travel in the wind. How can the pollen travel? That’s where the worker bee comes in. With its bright yellow color and sweet perfume, the flower lures the bee and offers not only one but two kinds of food: nectar and pollen.

The bee’s body is covered with feathery hairs. As the bee dips her head into the flower to sip the sweet nectar deep inside the blossom, her hairy body rubs against the anthers holding the pollen. Her body traps some of it. When the bee flies off to the next flower, some of the pollen on her body sticks to the stigma there.

Now the bee has done her job. The bee has collected two kinds of food from the flower. At the same time, it has carried pollen from one flower to another. New seeds will form. Soon new flowers will bloom.
How I Respond to Conflicts

Fill in the appropriate circle for things you always, sometimes, or never do.

When there's a conflict, I try to:

<table>
<thead>
<tr>
<th></th>
<th>Always</th>
<th>Sometimes</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. hit the other person</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. run away</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. get help from another kid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. talk it out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ignore it</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. understand the other point of view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. make a joke of it</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. get help from a grown-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. make the other kid apologize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. apologize myself</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. find out what the problem is</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. listen to the other kid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. tell the kid to leave me alone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. say swear words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. get friends to gang up on the other kid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Creative Conflict Resolution, copyright © 1984 William J. Kreidler, published by Scott, Foresman and Company.
Chapter 8. Team Building

I Am

Instructions: Mark line closest to the word that best describes you.

- Fast ← → Slow
- Thinker ← → Doer
- Morning Person ← → Night Person
- Listener ← → Talker
- Leader ← → Follower
- Indoor Person ← → Outdoor Person

I Prefer:

Instructions: Mark line closest to the word that best describes you.

- Adventure Movie ← → Comedy
- Ice Cream ← → Cake
- Airplanes ← → Boats
- Sports Car ← → Luxury Car
- Beach ← → Mountains
- Dogs ← → Cats

Spencer Kagan: Cooperative Learning®
Publisher: Resources for Teachers, Inc. - 1(800) Wee Co-op

8:12
Chapter 8. Teambuilding

I Am

Instructions: Mark line closest to the word that best describes you.

- Fast
- Thinker
- Morning Person
- Listener
- Leader
- Indoor Person

- Slow
- Doer
- Night Person
- Talker
- Follower
- Outdoor Person

I Prefer:

Instructions: Mark line closest to the word that best describes you.

- Adventure Movie
- Ice Cream
- Airplanes
- Sports Car
- Beach
- Dogs

- Comedy
- Cake
- Boats
- Luxury Car
- Mountains
- Cats

Spencer Kagan: Cooperative Learning ©
Publisher: Resources for Teachers, Inc. • 1(800) Wee Co-op